Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Hyporheic exchange is critical to river corridor biogeochemistry, but decameter‐scale flowpaths (∼10‐m long) are understudied due to logistical challenges (e.g., sampling at depth, multi‐day transit times). Some studies suggest that decameter‐scale flowpaths should have initial hot spots followed by transport‐limited conditions, whereas others suggest steady reaction rates and secondary reactions that could make decameter‐scale flowpaths important and unique. We investigated biogeochemistry along a 12‐m hyporheic mesocosm that allowed for controlled testing of seasonal and spatial water quality changes along a flowpath with fixed geometry and constant flow rate. Water quality profiles of oxygen, carbon, and nitrogen were measured at 1‐m intervals along the mesocosm over multiple seasons. The first 6 m of the mesocosm were always oxic and a net nitrogen source to mobile porewater. In winter, oxic conditions persisted to 12 m, whereas the second half of the flowpath became anoxic and a net nitrogen sink in summer. No reactive hot spots were observed in the first meter of the mesocosm. Instead, most reactions were zeroth‐order over 12 m and 54 hr of transit time. Influent chemistry had less impact on hyporheic biogeochemistry than expected due to large amounts of in situ reactant sources compared to stream‐derived reactant sources. Sorbed or buried carbon likely fueled reactions with rates controlled by temperature and redox conditions. Each reactant showed different hyporheic Damköhler numbers, challenging the characterization of flowpaths being intrinsically reaction‐ or transport‐limited. Future research should explore the prevalence and biogeochemical contributions of decameter‐scale flowpaths in diverse field settings.more » « less
-
Abstract. Hall et al. (2013) presented a synthesis on 969 nutrient tracer experiments conducted primarily in headwater streams (generally < fourth-order streams), with discharges < 200 L s−1 for ~90 % of the experiments, and used a scaling method to test the hypothesis that nutrient demand is constant with increasing stream size (i.e., along a river continuum). In this comment we present a reanalysis of a subset of the data used by Hall et al. (2013) and propose that their correlations between nutrient uptake lengths of ecologically important solutes and specific discharge are inadvertently spurious. Therefore, the conclusions derived from such correlations are debatable. We conclude the comment by highlighting some of the uncertainties associated with using modeling frameworks for scaling nutrient uptake in stream ecosystems.more » « less
-
Abstract. Resazurin (Raz) and its reaction product resorufin (Rru) have increasingly been used as reactive tracers to quantify metabolic activity and hyporheic exchange in streams. Previous work has indicated that these compounds undergo sorption in stream sediments. We present laboratory experiments on Raz and Rru transport, sorption, and transformation, consisting of 4 column and 72 batch tests using 2 sediments with different physicochemical properties under neutral (pH = 7) and alkaline (pH = 9) conditions. The study aimed at identifying the key processes of reactive transport of Raz and Rru in streambed sediments and the experimental setup best suited for their determination. Data from column experiments were simulated by a travel-time-based model accounting for physical transport, equilibrium and kinetic sorption, and three first-order reactions. We derived the travel-time distributions directly from the breakthrough curve (BTC) of the conservative tracer, fluorescein, rather than from fitting an advective-dispersive transport model, and inferred from those distributions the transfer functions of Raz and Rru, which provided conclusive approximations of the measured BTCs. The most likely reactive transport parameters and their uncertainty were determined by a Markov chain–Monte Carlo approach. Sorption isotherms of both compounds were obtained from batch experiments. We found that kinetic sorption dominates sorption of both Raz and Rru, with characteristic timescales of sorption in the order of 12 to 298 min. Linear sorption models for both Raz and Rru appeared adequate for concentrations that are typically applied in field tracer tests. The proposed two-site sorption model helps to interpret transient tracer tests using the Raz–Rru system.more » « less
An official website of the United States government
